

UTTRI

Dual-Objective Transit Signal Priority for Improving Speed and Reliability of High- Frequency Lines: A Deep Reinforcement Learning Approach

Wen Xun Hu, Amer Shalaby, Baher Abdulhai | wenxun.hu@mail.utoronto.ca

MOTIVATION

Transit Signal Priority (TSP)

- Effective in reducing signal delays
- Does not guarantee improvement in reliability

Transit Reliability and Speed

• Key performance indicators for transit agencies and users

×↓ ××

Model free

• Target travel time to maintain

scheduled headway at check-out

• Number of vehicles in the POZ

(0)

- Transit services are vulnerable to variability and delays, especially in busy networks
- No strategies can adaptively optimize reliability and speed simultaneously

OBJECTIVE

Dual-Objective TSP

Adaptively optimize reliability (i.e., headway regularity) and reduce signal delays simultaneously

>> continues

Two Objectives: Minimize Signal Delay vs. Minimize Headway Deviation

- Headway > scheduled headway: minimize signal delay reduces headway deviation
- Headway < scheduled headway: minimize signal delay aggregates headway deviation

Training

• Microsimulation using Aimsun Next connected with external DRL program

 $w_h(hdy\ improvement) - w_t(time\ in\ POZ)$

- green extension up to 20 s

RESULTS

Base Scenarios

• No TSP (BS1) and Existing TSP (BS2)

in-vehicle tt